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Abstract — Simplified and rigorous mode-matching anafyses are applied

to find the propagating characteristics of Microslab— a novel, planar

wavegniding medium. We also report, for the first time, the coupling of a

millimeter-wave Ga.As Gunn device directly to Microslab using a mono-

lithic-like structure to produce 0.25 mW of oscillator power at 141 GHr.

I. INTRODUCTION

M ICROSLAB [1] derives its name from nzicrostrip

and dielectric slab waveguide because it embodies

their transmission properties. Fig. 1 illustrates the geome-

try and permittivities of the structure. The dielectrics and

their thicknesses are chosen such that the propagating

energy is in a single mode confined to the central dielectric

Cg at the upper end of the design frequency range. Near

and at this frequency edge, the coupling to the metal

conductors is via the evanescent tails of the propagating

mode. The metallization improves binding of the wave and

suppresses coupling to the laterally leaky slab modes dis-

cussed by Peng and Oliner [2]. The reduced field strength

at the conductors also reduces ohmic losses.

Coupling to the conductors is stronger at lower frequen-

cies, where ohmic losses are low. Furthermore, this in-

creased coupling causes the mode to become increasingly

microstrip-like in nature, thereby lowering dispersion be-

low that of a slab waveguide. Judicious choice of dielectric

materials and geometry can produce wide-band, single-

mode propagation with low loss and low dispersion. A

qualitative and quantitative relationship between the

single-mode frequency range and the dimensions and per-

mittivities will become apparent in our discussion below.

To emphasize monolithic feasibility, we constructed a

Microslab structure (Fig. 1) using a semi-insulating,

single-crystal (100)-oriented GRAS substrate of thickness

h and permittivity fg. A grounded alumina slab with

perrnittivity ~, and tluckness d. and a metallized alumina

rod of width w and thickness d, formed the remaining

elements of the structure. A comparison of the dimensions

of Microslab (Fig. 1) and microstrip [3] for the same range

of operating frequencies would intuitively suggest a higher

quality factor Q for the former because of the much larger

volume-to-surface ratio.
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Fig. 1. The Microslab structure.
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Fig. 2. Structure for analysis.

For convenience, the symbols used in Fig. 1 are sum-

marized below, with the actual materials ‘used in this

investigation indicated in parentheses:

f ~ permittivity of the grounded dielectric substrate

(Al ,03),

d, thickness of grounded dielectric slab,

Cg permittivity of the guiding slab (GaAs),

h thickness of the guiding slab,

c, permittivity of the dielectric loading rod (A1Z03),

d, thickness of the dielectric loading rod,

w width of loading rod.

II. APPROXIMATE ANALYSIS

Useful insight into the origins of Microslab’s favorable

transmission properties can be gained from considering a

wide-strip approximation for the dominant and higher

order modes. For example, such an analysis leads Ito a

closed-form expression for the loss in terms of the surface

resistance R. of the conductors according to the relation

1 R,F
——

“=g?l 60
(1)
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where q is the intrinsic impedance of free space, super- enough d can minimize the effect of the cover plate.

script r denotes relative permittivity and F = F( E~, c,, c~, Because the dominant mode has even symmetry about the

h, d,, dl) is a form factor, which for wide strips is given by central vertical plane bisecting the structure, a vertical

sech2 ( p,d~ ) + sech2 ( pld,)
F= - [9).

H tan ( qh/2)
~ sec2 (qh/2) +

)(

tanh ( p,d. ) dl tanh ( p[dl) “ ~A]
+ 3 sech2 (p,d, ) +

(qlz/2) 6, (p,d,) )(

+ ; sech2 (pldl) +

(P/d~) )1
Here p,, PI, and q are the transverse propagation factors
in materials c., ~,, and Cg, respectively, and are obtained

by solving the characteristic equations

(qh)tan(qh/2) =
(P#) tafi(p,d.) (p,k)ta~(p,d,)——

fg/~s cg/cl

(3)

in conjunction with conditions imposed by the wave equa-

tion

(p,h)2+(qlz)2= (koll)’(cg - C,)/co

(p,h)2+ (qh)2=(koh)2(t, -cJ/’fo (4)

where k. is the free-space wavenumber and c~ is the

free-space permittivity. Note that F has the dimensions of

capacitance per unit area, and when d,= d[ = O, eq. (1)

reduces to an expression for loss in a wide microstrip line

[4], [5], as expected. For nonzero values of d, and d,, F

decreases monotonically with increasing values of d and

increasing frequency, leading to lower loss. Also, c& in-

creases with frequency owing to stronger confinement of

the propagating energy within the central slab (Fig. 5),

resulting in a further reduction of the ohmic loss with

increasing frequency. We have neglected both radiation

loss, because it is low [1], and dielectric loss, because

estimates based on our measurements of Microslab loss

and those of Afsar [6] indicate that it is small.

The characteristic impedance ZC obtained from a

power–voltage definition in this wide-strip limit is given

by

magnetic wall is placed at x = O to eliminate the odd

modes.

The structure is further subdivided into three regions:

region 1 under the strip, region 2 above the strip, and

region 3 external to the strip (Fig. 2). The fields in each

region are expanded in terms of hybrid TE and TM

modes, which satisfy all the required boundary and radia-

tion conditions, and the field expansions are then matched

at x = w/2. Imposing orthogonality eliminates the expan-

sion coefficients from regions 1 and 2 and leads to an

infinite-dimensional homogeneous matrix equation which

has a nontrivial solution for the propagation constant ~

when the determinant of the matrix vanishes.

For computer implementation, the matrix is truncated,

yielding an approximate solution that converges to the

exact solution in the limit. The number of expansion terms

in each region is chosen in proportion to the physical

dimensions of the region in the y direction in order to

satisfy the edge condition at x = w/2 and y = d, + k + dl.

A rough check for the mode-matching solution can be

obtained from an effective-dielectric-constant method,

where the top strip is extended to infinity in the y direc-

tion, and the resulting slab waveguide of Fig. 3 is analyzed

for the lowest TEX effective dielectric constant Cleff. The

top dielectric strip of Microslab is replaced by an infinite

slab with permittivity c~,ff leading to the hypothetical

structure of Fig. 4. This structure is expected to approxi-

mate the Microslab since Cl,ff includes the effect of the

discontinuity from ~, to air at x = w/2. The new structure

is then analyzed by the spectral-domain method [7] using

The superscript r denotes permittivities relative to free one basis function each for the current in the x and z
space. Again, this expression reduces to that of a wide directions.
microstrip when d. = d,= O. Although the foregoing dis- Results of computation by the mode-matching and ef-
cussion gives useful insight, detailed quantitative analysis fective-dielectric-constant methods are displayed in Fig. 5
can be obtained only from a more rigorous mode-matching for the case d,= d,= 0.25 mm, h = 0.33 mm, (,= Cl =

analysis, presented below. 9.76., c~ =12.9c0, and w = 0.25 mm.

III. RIGOROUS FORMULATION IV. CIRCUIT DESIGN

Analysis by the mode-matching method requires a closed The circuit design (Fig. 6) was deliberately constrained
structure, but adding a plate above the Microslab structure so that the Gunn diode chip within the package was in the
at y = d (Fig. 2) discretizes the eigenvalue spectrum. Com- plane of one of the GaAs faces of the Microslab structure
putation becomes tractable thereby, and choosing a large (to closely approximate the monolithic situation). A reso-
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Fig. 5. Dispersion curve for the sample structure (inset).
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Fig. 6. Millimeter-wave Microslab oscillator circuit.
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Fig. 7. Partially disassembled millimeter-wave oscillator circuit.

nant ring, 1.27 mm in diameter and 0.25 mm high with a

0.25-mm-thick wall, was positioned alongside the output

line (with the same width and height as in Fig. 5) for

impedance matching and frequency definition, based on

considerations similar to those applied to microstrip DRO

oscillators [8]. The final position of the ring and its sep-

aration from the Microslab line for maximum output

power were determined experimentally.

The oscillator was tested through a cosine-tapered ridge

transition to rectangular waveguide [9].

V. FABRICATION AND TEST

The skin depth of millimeter-wave energy at the operat-

ing frequency is approximately 0.2 pm. Therefore, the

metallized interfaces must be highly polished to realize the

low loss. The alumina elements were obtained by grir~ding

and polishing 99.6-percent alumina slabs to the proper

thickness and finish, and then cutting and machining them

as desired. The parts were then metallized and epoxy-

bonded to the vendor-supplied GRAS substrate, and the

composite structure was soldered to a gold-plated brass

block containing the diode and the waveguide transition.

Initially, we designed the circuit to accommodate two
resonant rings, one at the fundamental and the other at the

second harmonic. However, we modified” the design due to

difficulties in fabricating these and other elements, and

added additional off-chip tuning to produce the actual

oscillator circuit shown in Fig. 7.

The Gunn device produced about 0.25-mW power at

141 CJHZ, corresponding to its third harmonic. The oscilla-

tion frequency is in good agreement with the predicted

theoretical value of 147 GHz obtained from our mode-

matching analysis. The device did not oscillate when the

resonant rings were removed, thus demonstrating that the

on-chip elements were the primary determinants of circuit

behavior. Other oscillator designs and measurements are

planned in the future.

VI. CONCLUSIONS

We have successfully demonstrated a Gunn oscillator

using Microslab, a novel, low-loss, low-dispersion wave-

guiding medium for millimeter-applications. We believe

that this is the first demonstration of direct (i.e., without

the use of rectangular waveguide or its derivatives) launch-
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ing of power into any planar dielectric waveguide from a

discrete device operating above 90 GHz. Mode-matching

and effective-dielectric-constant analyses have been pre-

sented which can be used to obtain accurate prediction of

the oscillation frequency. Design data from these analyses

enable the Microslab propagation constant to be calcu-

lated at different operating frequencies. Although we at-

tempted to closely approximate a monolithic design within

the fabrication constraints, significant challenges lie ahead.

We are concurrently investigating related theory, materials,

thermal considerations, and processing requirements nec-

essary for a fully integrated monolithic circuit implementa-

tion.
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